Visual Diver Recognition for **Underwater Human-Robot Collaboration** Youya Xia and Junaed Sattar University of Minnesota, Twin Cities, USA

and Vision Laboratory (IRVLab)

Contributions

Overview:

- A method for visually detecting and identifying divers using deep-learned detection models and feature-based learning of individual appearances **Experiments**:
 - Evaluation of the accuracy and performance of the proposed algorithm on both the open-water (ocean)

Training and Evaluation

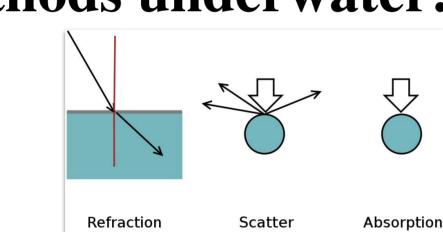
Training:

- Faster R-CNN was trained on a quad NVIDIA GTX 1080 system with 2,000 images • Used the pretrained Neural Network distributed by Tensorflow to speed up training **Evaluation:**
 - Performance was evaluated on:

and closed-water (pool) datasets

• A real-time implementation of the said algorithm to run on-board a mobile robot

Motivation and Challenges


Motivations:

- Facilitating the direct communication between divers and autonomous underwater vehicles (AUVs)
- Enabling AUVs to interact only with particular users, for example, to interact with or follow specific people Limitation of the existing methods:
 - The existing diver detection methods do not detect specific divers

Challenges of vision-based methods underwater:

 Optical distortion • Color absorption

• GPU (NVIDIA GTX 1080) • CPU (Intel i3-6100U)

• Conducted on different scenarios in the pool

• Also conducted on the ocean datasets collected during AUV field trials at the Bellairs Research Center in Barbados

Implementation and Experimental Evaluation

Scenario	Accuracy(%)	Missed Identification(%)	Wrong Identification(%)
Scenario 1: two divers, no flippers, one diver exits scene	100	0	0
Scenario 2: two divers, no flippers, one diver exits scene and later reenters	96.8	0	3.2
Scenario 3: two divers, with flippers, one diver exits scene	94.9	0.3	4.8
Scenario 4: two divers, with flippers, one diver exits scene and later reenters	90.8	2.2	7
Scenario 5: three divers, no flippers, one diver exits scene	77.5	1.4	21.1
Scenario 6: three divers, with flippers, one diver exits scene	80.7	0	19.3
Scenario 7: two divers, no flippers, free-form swim	90.5	0	9.5
Scenario 8: two divers, ocean waters ,full-body dive suit and flippers	96.07	0	3.93

Fig.2: The experimental results of the 8 different scenarios

Methodology

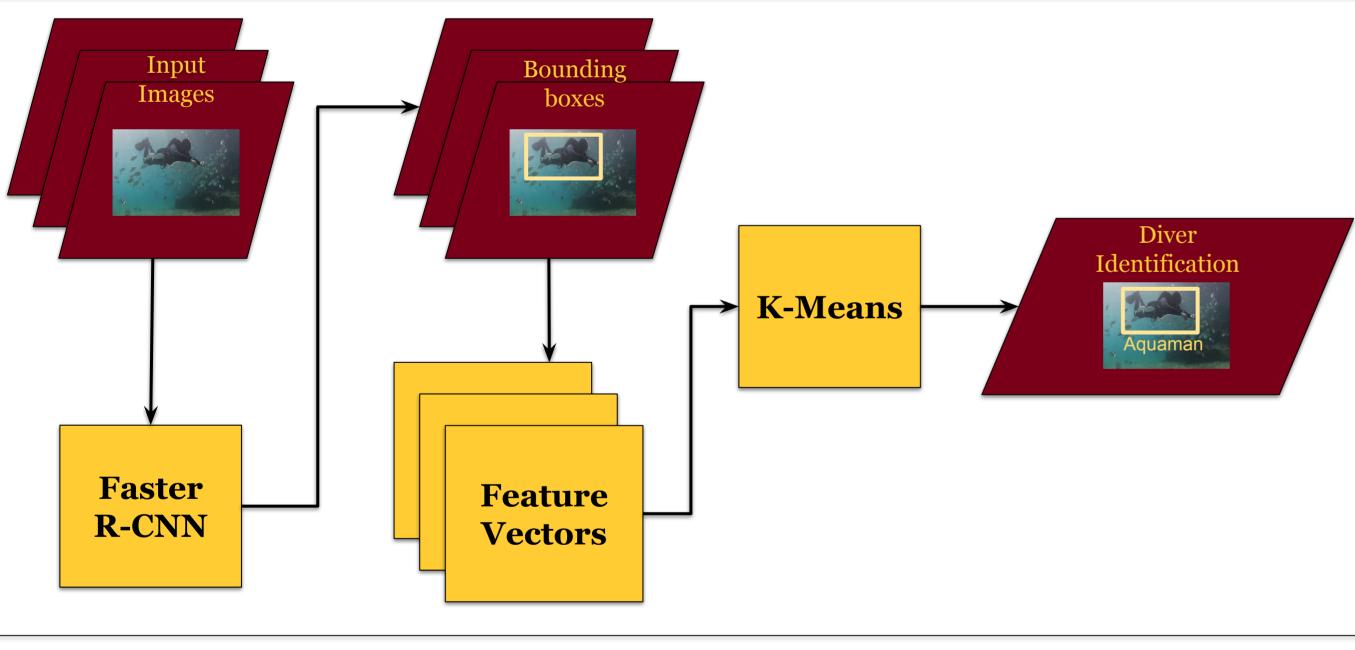


Fig. 1: The pipeline of the proposed algorithm

. Diver Detection with **Faster R-CNN:**

• Outperforms the majority of other deep learning neural networks in accuracy (e.g, about

• K-Means clustering: Choosing five different features from each diver detected by Faster R-CNN • Convex hull of shapes of divers

Fig.3: Three divers, no flippers, one diver exits scene

Fig.4: Two SCUBA divers , one exits the scene

Conclusions and Work-in-progress

Conclusions:

• We have proposed the first vision-based algorithm for underwater autonomous robots to uniquely identify swimmers and divers • Part of a broader human-robot collaboration framework

Future work:

- Incorporating pose detection models (*e.g.*, OpenPose) into the feature vector to enhance identification accuracy
- Integrating gesture-based communication and diver-following abilities with the diver-identification algorithm

10 percent more accurate than YOLO) • Also outperforms the majority of other **Regional Convolutional** Neural Networks (R-CNNs) in speed (*i.e.*, about 20 times faster than other R-CNN models)

• Seven Hu's Moments • Average color distribution

- Amplitude of Spatial Frequency Distribution
- Canny edge features

Resources

- Code: https://github.com/xiaxx244/diver detection
- **Demo**: youtu.be/rbsOBoG2QeM
- Contact: <u>xiaxx244@umn.edu</u>
- More: visit us at irvlab.cs.umn.edu

