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Abstract— This paper presents an approach for autonomous
underwater robots to visually detect and identify divers. The
proposed approach enables an autonomous underwater robot
to detect multiple divers in a visual scene and distinguish
between them. Such methods are useful for robots to identify
a human leader, for example, in multi-human/robot teams
where only designated individuals are allowed to command or
lead a team of robots. Initial diver identification is performed
using the Faster R-CNN algorithm with a region proposal
network which produces bounding boxes around the divers’
locations. Subsequently, a suite of spatial and frequency domain
descriptors are extracted from the bounding boxes to create a
feature vector. A K-Means clustering algorithm, with k set to
the number of detected bounding boxes, thereafter identifies
the detected divers based on these feature vectors. We evaluate
the performance of the proposed approach on video footage of
divers swimming in front of a mobile robot and demonstrate
its accuracy.

I. INTRODUCTION

Underwater robotics is a rapidly expanding area of study
in the field of autonomous intelligent systems. Underwater
robots are frequently used in a range of applications, includ-
ing exploration, surveillance, and inspection tasks. However,
due to the challenges and risks involved in the underwater do-
main and the current state of autonomous behaviors, remotely
operated vehicles (ROVs) are most commonly deployed.
Some autonomous underwater vehicles (AUVs) have also
been used, e.g., for eliminating invasive species [7]. While
ROVs provide a range of benefits, they require an operator
on the ‘top-side’ (on the surface of the body of water) to
continuously operate the vehicle. The top-side operator is
required to both interpret instructions coming from the divers
and forward those instructions to the robot. This complicates
the operational loop, adds significant temporal, monetary, and
energy costs; and reduces the range of collaborative tasks.

Motivated by the desire to avoid such complex interaction
methods, the authors’ previous work has looked into proto-
cols for direct human-robot interaction between divers and
AUVs (e.g., [15], [17], [34], [39]) without the need for a top-
side operator. Such protocols require methods for divers to
communicate explicitly with robots (e.g., via gestures [15]),
and also requires robots to implicitly interact with divers by
accompanying them during the missions [17], [32].

Detecting a diver or swimmer in underwater environ-
ments poses a significant challenge to vision-based methods
due to optical distortions, color absorption, and scattering
issues [40]. Sensors relying on electromagnetic emissions
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Fig. 1 A sequence of images showing a diver and robot
collaborating directly. In such missions, an AUV often needs
to not just follow any diver but a specific diver.

e.g., radar, lidars, radio, wifi) are susceptible to large atten-
uation and are thus unusable for underwater applications.
Sonar is predominantly used in many underwater vehicles,
particularly for localization, long-range sensing, and low-
bandwidth communication, but does not provide the band-
width and richness necessary for AUV’s to track targets in
real-time. Furthermore, active sensors can be intrusive to
marine species and have detrimental effects on their well-
being. With recent advances in deep machine learning, par-
ticularly in convolutional and recurrent neural networks, gen-
erative adversarial networks, and deep reinforcement learn-
ing, machine vision has shown some promising results in
underwater applications. In particular, robot convoying [35],
image enhancement [9], and gesture-based programming [15]
have been shown to work well in real-world settings. High
accuracy with deep object detectors (e.g., [27], [29]), and
the availability of embedded, power-efficient hardware that
can efficiently run deep models real-time have encouraged
robotics researchers to delve into the ‘tracking-by-detection’
approach. However, while these methods are able to robustly
detect objects of interest in a scene (divers in our case),
they have not been able to distinguish between them unless
there is a high degree of ‘in-class’ feature diversity. In
other words, individual detected objects, while belonging to
the same class, should exhibit difference in features to be
distinguished robustly. In the case of divers in underwater
scenes, such feature diversity is often absent. In addition,
data scarcity is an issue that prevents deep methods from
reliably identifying individual divers. Due to the very nature
of deep learning methods, little control can be asserted over
the feature selection process, which makes them a somewhat
less desirable choice.

This paper presents a method that makes it possible to



uniquely identify swimmers and divers. A convolutional
model-based object detector, specifically Faster R-CNN with
region proposal network, is first used to detect divers in the
scene, and bounding boxes in the image containing divers are
generated. These bounding boxes are passed on to a suite of
feature detectors comprised of spatial and frequency-domain
image features. The vectors constructed by the said detectors
are then fed into a K-nearest neighbor clustering algorithm to
identify individual divers. Specifically, this work contributes

1) a method for visually detecting and identifying divers;
2) a method combining supervised feature-based with un-

supervised learning for diver identification;
3) a real-time implementation of the said algorithm to run

on-board a mobile robot1; and
4) extensive evaluation of the method on datasets of divers

and swimmers collected in diverse environments.
The task of identifying individual divers, as stated previously,
is both open and challenging, and is required for human-
robot collaborative tasks underwater. The proposed work is
the first of its kind to achieve this by learning diver features
from visual stimuli using both deep and feature-engineered
methods.

II. RELATED WORK

This work is a combination of people tracking and iden-
tification tasks which has been extensively investigated [16].
Niyogi and Adelson [25] use the positions of the head and
ankles to detect human walking patterns orthogonal to cam-
era view direction. In the seminal work using “moving light
displays”, Rashid observed [26] that human visual systems
are quite sensitive to even limited human-like motions. Iden-
tifying walking gaits have also been investigated, as shown in
recent advancements in Biometrics [24]. Automated analysis
of walking gaits [36], [37] have also been demonstrated.

The Kalman filter [19] is the classical approach for real-
time tracking. However, a linear dynamics model of the given
system is required for it to work. The motion of human
swimmers is quite non-linear and linearization of the system
model may lead to subpar performance or in the worst case
divergence. The Unscented (otherwise known as the Sigma-
Point) Kalman Filter [18] allows for some non-linearity in
the tracked process and is less computationally expensive
than fully non-parametric algorithms (e.g., [13]).

Visual tracking of divers and swimmers has not been
explored greatly though work exists for visual tracking of
arbitrary targets and subsequent robot servoing [12]. Also,
real-time control and tracking schemes have been shown
to work well for visual target-following underwater (e.g.,
[33]). Spatio-temporal tracking of biological motion for
diver-following has been shown to work when divers swim
directly away from the robot [31] and in other straight-
line trajectories [32]. Recent work has also made it possible
to track divers swimming in arbitrary directions [14], [17].

1https://github.com/xiaxx244/diver_
detection.git

Also, in the underwater HRI space, the CADDY project has
a number of contributions [5], [22], [23].

Deep visual models for target detection have seen rapid
adoption of late and have shown high-accuracy in a number
of challenging tasks. In this work, we use Faster R-CNN [29]
with a region proposal network for finding diver locations.
However, researchers have developed a number of other
accurate models such as the Mask R-CNN [10], Single Shot
MultiBox Detector (SSD) [20], and a family of You Only
Look Once (YOLO) models (YOLO V2 [27], Tiny YOLO
[28], etc.). These are the fastest (in terms of processing time
of a single frame) among the family of current state-of-
the-art models [38] for general object detection. We train
these models using a rigorously prepared dataset containing
sufficient training instances to capture variations of diver
appearances that can arise in underwater human-robot col-
laborative scenarios.

III. METHODOLGY

The proposed algorithm for identifying divers is detailed
in the following subsections. In particular, we explain the
feature-based unsupervised identification process of divers
and the factors that lead to those choices in detail.

A. Diver Detection using Deep Models

In order to construct a feature vector to distinguish each
diver, we need to find all divers inside an image. Typically,
the methods which can be used to find pedestrians or people
in terrestrial scenes tend to fail when trying to detect a
diver since the shape of a diver is different from the shape
of a pedestrian. This difficulty arises from posture differ-
ences as divers are in predominantly horizontal orientations
underwater. The additional gear worn by the divers (e.g.,
dive suits, buoyancy devices, fins) also creates challenges
for such algorithms. The authors’ previous work has looked
at periodic motion cues for diver detection (e.g., the Mixed
Domain Periodic Motion or MDPM [17] algorithm) and it
has been shown to work well. However, MDPM does not
generate a bounding box around the diver, as it tracks the
propagation of the energy signature in the frequency domain
generated by the diver’s swimming gait. Therefore, in order
to detect a diver, instead of more traditional approaches (such
as HOG (histogram-of-gradient) descriptors), we opted for a
deep learning model to detect divers with bounded locations.

Using the principles of a convolutional neural network
(CNN), an input neuron in Faster R-CNN is only connected
to part of the first layer of the network. However, Faster
R-CNN adds a region proposal network just before the
object classifier CNN to generate anchor boxes (i.e., potential
bounding boxes). Therefore, only such bounding boxes are
needed to be given to a smaller (‘shallower’) CNN which
is designed for classification and regression, making it faster
than using a full CNN over the entire image space. This fast
runtime performance, along with the accuracy demonstrated
by Faster R-CNN, made it a prime choice for the diver
detection phase of the proposed algorithm. For the purpose
of training our diver detection model, we used approximately



2000 labeled images of divers in underwater settings. These
images were obtained from field trials we conducted at
previous times in pools, lakes, and oceans over the past few
years. While 2000 images may not seem sufficient to train a
deep detection algorithm, having a pretrained Faster R-CNN
model makes it possible to achieve high accuracy by simply
using the additional training data for the required object class
(divers in our case).

Fig. 2 Bounding boxes around divers after detection.

B. Feature Extraction

Once divers are detected in an image, we need to construct
a feature vector for each detected diver. We use feature-based
unsupervised learning to classify each bounding box returned
by the diver detector to individually identify each diver.

a) Average Color Distribution: While color as a stan-
dalone feature can be affected greatly by optical distortions
and attenuation, it can be a useful discriminator within
bounding boxes containing divers. Specifically, skin com-
plexion and the colors of the dive suit and gear can be
useful cues. Although RGB values may be a good indicator
for identifying the color differences between divers, we
convert the color space from RGB to LAB to provide more
precise color comparison. LAB is a three-dimensional color
space which represents lightness of color, spatial differences
between red and green, and also between yellow and blue.
However, only using the sum of LAB values of each pixel
inside each bounding box may lead to incorrect classification
when a diver’s distance from a robot changes. Therefore,
instead of using the sum of LAB values, we choose to use
the average LAB value inside each bounding box. If µ is
the average color in each bounding box, x and y are the
horizontal and vertical coordinates respectively of each box
and l, a and b are the LAB values of each pixel, then

µ =
l + a+ b

(ymax − ymin)× (xmax − xmin)
(1)

Additionally, to improve overall precision, each bounding
box is divided into four equal rectangular regions and the
average color values for each region are obtained separately.
The final feature vector contains four average LAB values
(i.e., µi, where i = 1→ 4) as a color descriptor of the diver.

b) Amplitude of Spatial Frequency Distribution: We
also look at spatial frequency of diver’s features to extract
unique signatures, by using the two-dimensional Fourier
Transform. The two-dimensional Fourier Transform (FT) of
an image can be expressed as:

F (k, l) =

N−1∑
i=0

N−1∑
j=0

f(i, j)e−i2π
(ki+lj)

N (2)

where f(i, j) is the image in the spatial domain and the
exponential term is the base function corresponding to each
point F (k, l) in the Fourier space.

After applying the 2D FFT, we compute the average
amplitude for each diver and use the three average amplitudes
(for each R, G, and B channel) as features.

c) Shape Approximation using Edge Features: This
feature aims to capture the differences in divers’ physiques –
shape in particular – factoring in the effect of the dive gear.
To achieve this, we first extract the diver’s contours within
the bounding box. The Canny edge detection algorithm
[1] is first applied to extract the edges within the diver’s
bounding box after smoothing the area using a Gaussian
filter. For each detected edge, the Ramer-Douglas-Peucker
(RDP) algorithm [8] is applied to approximate the edges
with fewer points. Finally, the average value (which is a 2-
tuple, <Ēx, Ēy>) of all approximated points in all contours
is used as a feature. The sequence of edge features of two
divers and their corresponding contours shown in Figures 3
and 4 demonstrate the differences between the two divers.
The pool markers do get included in the feature set which
may adversely affect detection accuracy. However, in most
cases, pool markers are not significant additions to the feature
set, and their effect is further marginalized by computing the
average of all the contour points (for both convex hulls and
edge features). Therefore, even with those markers, the edge
and convex hull features for each diver are quite unique and
provide distinctive features.

d) Shape Approximation using the Convex Hull: A
convex hull is defined as a convex polygon constructed by
obtaining a minimal subset of the points such that all the
points in the set fall either inside or on the boundary of the
polygon [3]. In order to obtain a convex hull, we first convert
the bounding box image to grayscale and apply a threshold
to suppress pixels which have significantly low intensity
(specifically pixels having intensity values of 50 or lower
in a scale of 0 to 255). A subsequent step extracts contours
from this binary image in a compressed format, preserving

Fig. 3 Sequence of edge features (top) and contours within
the bounding box for diver Liam.



Fig. 4 Sequence of edge features (top) and contours within
the bounding box for diver Emma.

Fig. 5 Convex hull features on divers Liam (top row) and
Emma (bottom row), drawn in yellow overlays.

contour hierarchies. We compute convex hulls of all these
contours using the Gift Wrapping algorithm [6], using this
compressed representation of contour points as input. The
hypothesis is that the number and shapes of convex hulls
drawn for each diver will capture the variability inherent in
the shapes of divers. As in the edge features, the average
of all points on each of these hulls, <C̄x, C̄y>, is used
as a feature. Figure 5 shows some results of convex hulls
constructed on divers’ outlines. Note that the convex hulls
for each diver are significantly different and are dependent
on their posture and physique. For instance, there are two
major convex hulls drawn for Liam (one around the head
and one on the bottom), whereas there is only one major
convex hull drawn for Emma.

e) Image Moments: In image processing, an image
moment is defined as the weighted average of intensities
in an image. Hu proposes seven specific moments which
have been shown to be invariant to changes in translation,
rotation, and scale [11]. Since these Hu’s moments will
remain unchanged for a specific diver even if the the diver’s
orientation or the distance between the diver and the robot

changes, they are strong candidates to be used as unique
features of divers. These seven moments are computed for
each diver’s bounding box and used as feature descriptors.

We evaluated other feature descriptors (such as ORB [30]
and SURF [2]) but these failed to provide sufficient distin-
guishing ability and were not ultimately used.

C. K-Means clustering

Once diver bounding boxes are obtained and feature
vectors consisting of the above-mentioned features are con-
structed, we use the K-Means clustering [3] implemented by
Lloyds algorithm [21] to cluster all feature vectors obtained
from diver regions. Note that in the K-Means clustering
algorithm, the number of clusters K needs to be chosen
upfront. Since it is possible that the general diver detection
of the initial frame may not identify all possible divers in
the whole detection process (e.g., some divers may appear
in the middle of the detection process or the general diver
detection does not capture all divers in the initial frames),
we decide to choose the number K to be the maximum
number of divers appearing during the detection process.
During the tracking process, the initial cluster centers are
randomly assigned to the collected feature vectors. During
each subsequent iteration, K-Means assigns each feature
vector to its closest cluster center using its Euclidean norm
and recomputes each cluster center to be the mean among the
feature vectors assigned to its group. The cluster refinement
process stops after cluster centers converge with error falling
below a threshold of 1e−4.

IV. EXPERIMENTS

We evaluate the performance of the proposed approach
using video data of divers in different bodies of water and
visual conditions, in both open-water (e.g., oceans, lakes)
and closed-water (e.g., swimming pools) settings. In this
section, we discuss the details of the validation process and
the subsequent results.

A. training process

Before we setup our experiment, we randomly select 2000
images from the images we have collected from 2016-2018
as the training dataset (among them, around 1000 images are
captured in the pool and another 1000 of them are captured
in the ocean.After we implement Faster R-CNN to train the
underwater images we have collected, we select 500 images
as the validation dataset and test the training result results
on the validation dataset. During the testing process, around
98 percent of divers in the images are successfully detected.

B. Experimental Setup

In order to evaluate the performance of the proposed
approach, we conducted several pool trials with a varying
number of people in the scene. Images were captured using
handheld underwater cameras (e.g., GoProsTM) or a trailing
underwater robot.

The experiments were set up in two different scenarios.
In the first case, two divers are seen swimming together



Scenario Accuracy(%) Missed
Identification(%)

Wrong
Identification(%)

Scenario 1: two divers, no flippers, one diver exits scene 100 0 0
Scenario 2: two divers, no flippers, one diver exits scene and later reenters 96.8 0 3.2
Scenario 3: two divers, with flippers, one diver exits scene 94.9 0.3 4.8
Scenario 4: two divers, with flippers, one diver exits scene and later reenters 90.8 2.2 7
Scenario 5: three divers, no flippers, one diver exits scene 77.5 1.4 21.1
Scenario 6: three divers, with flippers, one diver exits scene 80.7 0 19.3
Scenario 7: two divers, no flippers, free-form swim 90.5 0 9.5
Scenario 8: two divers, ocean waters, full-body dive suit and flippers 96.07 0 3.93

TABLE I Quantitative performance of the proposed diver identification algorithm in different environmental conditions with
a varying number of divers.(For each scenario listed above, we have chosen 1500 images for testing)

without flippers at the beginning of the experiment. About
halfway through the sequence, one diver leaves the scene
and does not return, leaving the other one swimming solo
until the end of the sequence. The second scenario begins
similarly, with two divers swimming together. About a third
into the sequence, one of the divers leaves the scene, while
the remaining diver continues swimming. However, unlike
the first scenario, the second diver reappears in the scene
about two-thirds into the sequence and continues swimming
together with the first diver until the end of the sequence.
The two scenarios were repeated in another trial where both
divers wore flippers to evaluate the algorithm’s performance
under subtle diver appearance changes.

We also conduct the entire experiment as described above
with three divers instead of two, having one diver leave and
reappear as before, leaving two divers consistently swimming
throughout.

C. Deep Diver Detection Model

During the general diver detection stage, we used the
Faster R-CNN [29] model with pretraining using a join-
training scheme [4], which requires less additional training
data. As mentioned in Section III-A, we use 2000 labeled
images of divers for training the general diver detection
model. Images from the datasets collected during the pool
trials were used for testing. In addition, to compare the per-
formance of our algorithm under different visual conditions,
we used datasets collected from previous pool and ocean
trials conducted at the Bellairs Research Center in Barbados2.
The Faster R-CNN model has been observed to work well,
achieving about 98% accuracy in our test datasets. Figure 2
shows the output of the deep detection model. The bounding
boxes shown in Figures 6 to 10 are also detected using the
same method, which demonstrate its effectiveness in different
environmental conditions.

D. Diver Feature Selection

We have visually demonstrated some of the features used
for diver identification in Figures 3 to 5. In the subsequent
discussion, we arbitrarily name the divers as Emma, Noah,
and Liam. The goal is to consistently identify each diver
with the same label each time they are visible in the scene.
Using a reliable object detector like Faster R-CNN ensures

2https://www.mcgill.ca/bellairs/

that the location of the diver can be accurately found (seen
in Figure 2). This in turn assists with the construction of the
diver’s feature vector and subsequent diver identification.

E. Recognition Accuracy

Overall, the proposed algorithm is found to be highly
accurate in identifying divers in different water conditions.
Figures 6 to 10 show qualitative results of the diver identifi-
cation process. Additionally, Table I compares the accuracy
of the proposed approach across eight scenarios. Correct
identification is above 90% for six of the eight scenarios.
The worst accuracy is 77.5% when tracking three divers with
one leaving the scene (scenario 5). Other than this scenario
and scenario 6, the identification accuracy is high, which
makes the approach feasible for underwater human-robot
collaborative applications. There are two possible reasons
why scenarios 5 and 6 have low accuracy: first, bubbles
produced by three swimmers (a larger volume than from
bubbles produced by two swimmers) obstruct the visual
detection of features of each swimmer, which may lead to re-
duced detection accuracy. Second, since the three swimmers
are very close, bounding boxes of swimmers drawn during
the general diver detection stage can sometimes overlap
which may dilute the difference of features extracted from
swimmers.

Fig. 6 Divers without flippers. Top row: Liam and Emma
are both detected, and then Liam leaves the scene. Bottom
row: Liam correctly identified after he reappears.



Fig. 7 Divers with flippers. Top row: Liam and Emma are
both detected. Bottom row: Emma correctly identified after
Liam leaves the scene.

Fig. 8 Divers without flippers. Top row: Liam, Noah and
Emma are all detected, and then Liam leaves the scene.
Bottom row: Noah and Emma correctly identified.

F. Training and Inference Performance

We trained the Faster R-CNN detector on a quad-GPU
(NVIDIA 1080) system for 200, 000 iterations, which re-
quired 10 hours. The algorithm achieves a run-time of 2.414
FPS on an Intel Core i7-5930K CPU running at 3.50 GHz.
For applications on an AUV, this is acceptable performance.
The attached video shows our method in action on sequences
of multiple divers.

V. CONCLUSIONS

This paper presents an approach for uniquely identifying
divers in visual scenes using a combination of feature-based
and deep convolutional detection models. A fast and reliable
deep detection model is first used to find regions containing
divers in an image. Once obtained, a set of spatial and
frequency-domain features are then extracted from each of
these regions to uniquely identify the diver contained therein.
We demonstrate the accuracy of the algorithm on handcrafted
experimental scenarios in closed-water environments and
also show that it is able to identify divers in both open-

Fig. 9 Divers Emma and Liam in SCUBA gear in the ocean;
Liam gradually disappears from the scene without affecting
detection accuracy.

Fig. 10 Detecting divers Emma and Liam in SCUBA gear
in another ocean setting with different color and scale
characteristics.

water and closed-water environments and under varying diver
appearances.

While this work proposes the first vision-based algorithm
to uniquely identify divers, it is also part of a larger frame-
work for human-robot communication, enabling AUVs to
interact only with the particular users allowed to instruct
the robot. To that effect, future work will integrate gesture-
based communication and diver-following abilities with the
diver-identification features. We are also currently working
on enhancing the accuracy of the deep diver detection mod-
els while requiring less computational resources for robot
deployment in open-water trials.
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